
Advances
in Applied Mathematics

An Introduction to Partial Differential
Equations with MATLAB®

3rd edition

Chapter 3: Using MATLAB for Solving Differential
Equations and Visualizing Solutions

© 2024 by Matthew P. Coleman∗ and Vladislav Bukshtynov∗∗

MColeman@fairfield.edu∗ ◦ VladislavBukshtynov@yahoo.com∗∗

CRC Press
https://www.crcpress.com/

MColeman@fairfield.edu
VladislavBukshtynov@yahoo.com
https://www.crcpress.com/


3.1 Visualizing Solutions of ODEs

Review: MATLAB keywords and commands for visualization
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html

keyword description: example

figure creates a new figure window: figure(1)

plot creates a 2D line plot based on vectors x and y: plot(x,y)

hold on new plots added to the figure do not delete existing plots: hold on

length returns the length of a vector: length(x)

linspace returns a vector of n evenly spaced points between x1 and x2:
linspace(x1,x2,n)

function declares a function with inputs x1, . . . , xm and outputs y1, . . . , yn:
function [y1,y2] = myfun(x1,x2,x3)

@ creates a function handle: f = @myfunction or cube = @(x) x.∧3
meshgrid returns 2D/3D grid coordinates based on vectors x, y, and z:

[X,Y] = meshgrid(x,y) or [X,Y,Z] = meshgrid(x,y,z)

quiver displays velocity vectors as arrows with components (u, v)
at points (x , y): quiver(x,y,u,v)

contour creates a contour plot of c-isolines: contour(X,Y,Z,c)

surf creates a 3D surface plot: surf(X,Y,Z)

mesh creates a 3D mesh plot: mesh(X,Y,Z)

imagesc displays the data in vector C at locations (x , y) using the full
range of colors in the specified colormap: imagesc(x,y,C)

colorbar displays a vertical colorbar for the current colormap: colorbar
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3.1 Visualizing Solutions of ODEs (cont’d)

MATLAB: Chapter 3 visualize ODEs.m

Review: n-parameter family of solutions for ODE F
(
x , y , y ′, y ′′, . . . , y (n)

)
= 0

represented (in general) by functions y given implicitly by

G(x , y , c1, c2, . . . , cn) = 0.

Example 1: Visualize solutions for the ODEs:

(a) xy ′ − y = x2 sin x and (b) y ′′ − 2y ′ + y = 0.
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3.1 Visualizing Solutions of ODEs (cont’d)

MATLAB: Chapter 3 visualize ODEs.m

Example 2: Visualize solutions for the second-order ODE

y ′′ − y = 0 ⇒ y = c1e
x + c2e

−x .

Review: for x > 0 and x →∞, this solution is a linear combination of a so-called
steady-state term ex and a transient term e−x , (the latter → 0 as x →∞, while the
former does not).
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3.1 Visualizing Solutions of ODEs (cont’d)

MATLAB: Chapter 3 visualize ODEs.m

Example 3: Create the direction field for the first-order ODE

dy

dx
= 0.2xy .

Review: We can garner a lot of good information without solving the ODE by plotting
direction fields to suggest the shapes of the solution curves y(x) by evaluating the
slopes dy

dx
= f (x , y) at various points (x , y).
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3.1 Visualizing Solutions of ODEs (cont’d)

MATLAB: Chapter 3 visualize ODEs.m

Example 4: Visualize (implicit) solutions of the first-order ODE

dy

dx
=

x(1− x)

y(y − 2)
⇒ G(x , y) =

1

3
y 3 − y 2 +

1

3
x3 − 1

2
x2.

MATLAB plots level curves G(x , y) = c with contour(X, Y, Z, c):

Matrices X and Y contain various x-
and y -values in the mesh/grid [X, Y].

Z contains G(x , y) values for the
corresponding x- and y -values in the
first two matrices.

contour(X, Y, Z, c) then picks out
those values of Z which are equal to
“height” c, for each chosen value of
c, creating a contour plot (level
curves or isoclines of Z).
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3.2 Symbolic Math Toolbox for Solving ODEs

Read more here: https://www.mathworks.com/products/symbolic.html

Symbolic computations: meaning analytically, as opposed to numerically or
approximately) to perform differentiation, integration, simplification, transforms, and
solving various equations, including differential equations.

Example 1: first-order nonlinear logistic equation

dP

dt
= P(a− bP),

with some modifications:

with source term h

dP

dt
= P(a− bP) + h,

describing changes due to immigration

dP

dt
= P(a− bP) + ce−kP , c, k > 0,

and the Gompertz equation

dP

dt
= P(a− b lnP).
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3.2 Symbolic Math Toolbox for Solving ODEs (cont’d)

Read more here: https://www.mathworks.com/help/symbolic/

solve-a-single-differential-equation.html

MATLAB: Chapter 3 symbolic math IVPs.m

disp('(a) logistic equation, solution');
a = 1; b = 0.1; P0 = 2; % ODE constants
syms P(t); % creating symbolic function P(t)
ode = diff(P,t) == P*(a-b*P); % defining ODE
cond = P(0) == P0; % setting IC
Psol(t) = dsolve(ode,cond); % solving IVP using dsolve
Psol = simplify(Psol) % simplifying solution
tt = 0:0.01:5; % time discretization for plotting
P1 = eval(Psol(tt)); % evaluating solution over grid tt
plot(tt,P1,'-r','LineWidth',2); % plotting solution

MATLAB output:
(a) logistic equation, solution

Psol(t) =

(10*exp(t))/(exp(t) + 4)

identical to the solution obtained by hand

Plogistic(t) =
10et

et + 4
.
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3.2 Symbolic Math Toolbox for Solving ODEs (cont’d)

Example 1 (cont’d): the same goes for other two cases:

(b) logistic equation with source, solution

Psol(t) =

5 - 3*5∧(1/2)*tanh(atanh(5∧(1/2)/5) - (3*5∧(1/2)*t)/10)

and

(d) Gompertz equation, solution

Psol(t) =

exp(exp(-t/10)*(10*exp(t/10) + log(2) - 10))

which are exactly the solutions computed analytically:

Psource(t) = 5− 3
√

5 tanh

[
tanh−1

√
5

5
− 3
√

5t

10

]
,

PGompertz(t) = exp
[
e−t/10(10et/10 + ln 2− 10)

]
.

But how about the equation, containing source (immigration) term ce−kP?

(c) logistic equation with immigration, solution

Warning: Unable to find explicit solution.

> In dsolve (line 201)

In Chapter 3 symbolic math IVPs (line 44)

Psol(t) =

[ empty sym ]
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3.2 Symbolic Math Toolbox for Solving ODEs (cont’d)

Example 2: How about boundary value problems?

y ′′ + λy = 0, 0 < x < 1,

y(0) = y(1) = 0,

subject to the normalization condition

y ′(0) = 1.

MATLAB: Chapter 3 symbolic math BVPs.m

syms y(x) lambda; % creating symbolic functions
D = diff(y,x); % defining derivative y'(x)
ode = diff(D)+lambda*y == 0; % defining ODE (2-order)
cond = [y(0) == 0 y(1) == 0 D(0) == 1]; % setting all conditions
Ysol(x) = dsolve(ode,cond); % solving BVP using dsolve
Ysol = simplify(Ysol) % simplifying & displaying

Attempt 1: solving as is (with unknown eigenvalue λ and all three side conditions)

Warning: Unable to find explicit solution.

> In dsolve (line 201)

In Chapter 3 symbolic math BVPs (line 24)

Ysol(x) =

[ empty sym ]
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3.2 Symbolic Math Toolbox for Solving ODEs (cont’d)

Attempt 2: simplifying the problem (making λ a known constant):

clear lambda;

n = 1; lambda = (n*pi)∧2;

It gives us the same result (probably because the problem was overdetermined)!

Attempt 3: removing the normalization condition

cond = [y(0) == 0 y(1) == 0];

and we get

Ysol(x) =

0

Much better! However, it’s only the trivial solution y(x) = 0 (not an eigenfunction).

Attempt 4: checking the general ability of the toolbox to solve BVPs by solving
completely new problem

y ′′ + y = 0, 0 < x < 1,

y(0) = y(1) = 1,

to ensure that MATLAB gives us its unique solution

y(x) =
1− cos 1

sin 1
sin x + cos x .
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3.2 Symbolic Math Toolbox for Solving ODEs (cont’d)

And now it works!

Compare: MATLAB’s solutions before and after applying the keyword simplify:

Ysol(x) =

cos(x) - (sin(x)*(cos(1) - 1))/sin(1)

Ysol(x) =

-(sin(x - 1) - sin(x))/sin(1)

MATLAB’s Symbolic Math Toolbox works for BVPs, but it requires the solution to exist
and to be unique!

Conclusion:

MATLAB’s computational functionality to search for analytical (symbolic)
solutions of various ODEs is wonderful!

However, we recognize its limitations – our knowledge of the theory and solution
algorithms is necessary in order to supervise the symbolic computations!
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3.3 Solving BVPs Numerically Using bvp4(5)c

bvp4(5)c: both solve boundary-value problems by employing Runge–Kutta methods of
the 4th and 5th orders, respectively (subject to given boundary conditions and initial
solution guess)

Read more here: https://www.mathworks.com/help/matlab/ref/bvp4c.html

and https://www.mathworks.com/help/matlab/ref/bvp5c.html

MATLAB: syntax (mandatory/optional)

sol = bvp4c(odefun, bcfun, solinit, options)
sol = bvp5c(odefun, bcfun, solinit, options)

sol: output solution structure with multiple fields

odefun: function handle that defines the functions to be integrated

bcfun: function handle that defines the boundary conditions (must accept the
same number of input arguments as odefun)

solinit: initial guess for the solution (we can use the function bvpinit to create a
solinit structure)

options: some options for setting optional parameters (if omitted, default values
are used)
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3.3 Solving BVPs Numerically Using bvp4(5)c (cont’d)

Example: Find all eigenvalues and eigenfunctions of the eigenvalue problem

y ′′ + λy = 0,

y(0) = y(1) = 0,

subject to normalization condition y ′(0) = 1 or cn =
1

nπ
, n = 1, 2, 3, . . . .

MATLAB: Chapter 3 BVPs bvp4c.m

figure(1); hold on; % figure #1 (solutions)
figure(2); hold on; % figure #2 (errors)
x = 0:0.01:1; % x-interval
lType = {'r','b','--r','--b',':r'}; % line types
for n = 1:5
lambda = (n*pi)ˆ2; % initial guess (nth eigenvalue)
solinit = bvpinit(x,@guess,lambda); % initial guess (solution)
sol = bvp4c(@odes,@bcs,solinit); % solve using bvp4c
figure(1); % plotting y(1) = y(x)
plot(sol.x,sol.y(1,:),lType{n},'LineWidth',2.5);
solEx = (1/(n*pi))*sin(n*pi*sol.x); % computing exact y(x)
figure(2); % creating error plot
plot(sol.x,abs(sol.y(1,:)-solEx),lType{n},'LineWidth',2.5);

end

14/21



3.3 Solving BVPs Numerically Using bvp4(5)c (cont’d)

Representing second-order ODE as a system of two first-order ODEs: substitution u = y ′

y ′′ + λy = 0 ⇐⇒
u = y ′,

u′ = −λy
or

d

dx

[
y
u

]
=

[
0 1
−λ 0

] [
y
u

]
.

MATLAB: Chapter 3 BVPs bvp4c.m (user functions)

% ODE-2 as a system of two ODE-1
function dydx = odes(x,y,lambda)
dydx = [y(2) % u = y'

-lambda*y(1)]; % u' = y'' = -lambda y
end

% boundary conditions
function res = bcs(yl,yr,lambda)
res = [yl(1) % y(0) = 0 (left)

yr(1) % y(1) = 0 (right)
yl(2)-1]; % y'(0) = 1 (left, normalization)

end

% initial guess (specific to problem)
function g = guess(x)
g = [sin(x) % y(x)

cos(x)]; % y'(x)
end 15/21



3.3 Solving BVPs Numerically Using bvp4(5)c (cont’d)

Visualizing results: eigenfunctions vs. (absolute) error functions εn(x) = |yn(x)− y ex
n (x)|
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“Normalization” process: any constant multiple of eigenfunction yn(x) is an
eigenfunction ⇒ normalization condition y ′(0) = 1 sets all eigenfunctions with slope
y ′ = 1 at the left end x = 0. In general, we may choose any condition that does not
contradict existing requirements and allows us to identify cn uniquely.

Review: structure of MATLAB script Chapter 1 bvp4c eigenproblem.m (in Chapter 1)
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3.4 Solving PDEs Numerically Using pdepe

As of now, there is no official MATLAB tool that deals with PDEs symbolically.

There is only one function, pdepe, for solving PDEs numerically (only for selected
equations in two independent variables).
Read more on pdepe: https://www.mathworks.com/help/matlab/ref/pdepe.html

Example: heat equation
ut = uxx ,

u(x , 0) = 7 cos
5x

2
,

ux(0, t) = u(π, t) = 0.

Analytical solution

u(x , t) = 7e−25t/4 cos
5x

2
.

MATLAB: excerpt from Chapter 3 PDEs pdepe.m for plotting using surf and mesh

x = linspace(0,pi,30); % discretizing x-interval
t = linspace(0,1,10); % discretizing t-interval
[X,T] = meshgrid(x,t); % creating (x,t)-grid
uAn = 7*exp(-25*T/4).*cos(5*X/2); % solution fn on (x,t)-grid
figure(1); surf(X,T,uAn); % surface plot using surf
figure(2); mesh(X,T,uAn); % mesh plot using mesh
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3.4 Solving PDEs Numerically Using pdepe (cont’d)

Visualizing results: using different methods
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Read more: https://www.mathworks.com/help/matlab/2-and-3d-plots.html
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3.4 Solving PDEs Numerically Using pdepe (cont’d)

MATLAB: pdepe to solve two-variable parabolic and elliptic equations of the form:

c

(
x , t, u,

∂u

∂x

)
∂u

∂t
= x−m ∂

∂x

(
xmf

(
x , t, u,

∂u

∂x

))
+ s

(
x , t, u,

∂u

∂x

)
MATLAB: syntax (mandatory/optional)

sol = pde(m, pdefun, icfun, bcfun, xmesh, tspan, options)

sol: output solution structure with multiple fields

m: symmetry constant (m = 0 for 1D Cartesian coordinates with no symmetry,
m = 1 for 2D cylindrical, and m = 2 for 3D spherical coordinates, with symmetry)

pdefun: function handle to define the coefficients c, f , and s of the PDE as
functions of x , t, u, and ∂u

∂x

icfun: function handle to define the initial condition

bcfun: function handle to define the boundary conditions

xmesh: spatial mesh given as a vector [x0 x1 . . . xn] specifying points where a
numerical solution is requested for every value in tspan

tspan: time span of integration given as a vector [t0 t1 . . . tf ] specifying points
where a numerical solution is requested for every value in xmesh

options: various options for setting optional parameters (if omitted, default values
are used)
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3.4 Solving PDEs Numerically Using pdepe (cont’d)

MATLAB: excerpt from Chapter 3 PDEs pdepe.m

x = linspace(0,pi,30); % discretizing x-interval
t = linspace(0,1,10); % discretizing t-interval
m = 0; % 1D case with no symmetry
u = pdepe(m,@heatEqn,@ic,@bcs,x,t); % solving PDE
surf(x,t,u); % plotting solution

return

% specify c, f, s to define PDE: 1*u t = d/dx(du/dx) + 0
function [c,f,s] = heatEqn(x,t,u,dudx)

c = 1;
f = dudx;
s = 0;

end

% boundary conditions
function [pl,ql,pr,qr] = bcs(x1,ul,xr,ur,t)

pl = 0; ql = 1; % left: 0 + 1*dudx = 0, i.e., u x(0,t) = 0
pr = ur; qr = 0; % right: u + 0 = 0, i.e., u(pi,t) = 0

end

% initial condition
function value = ic(x)

value = 7*cos(5*x/2);
end

Format for boundary conditions:

p(x , t, u) + q(x , t)f

(
x , t, u,

∂u

∂x

)
= 0
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3.4 Solving PDEs Numerically Using pdepe – Visualizing Results
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